本文目录一览:
高三数学必修五《等比数列》教案
1、高中数学教案《等比数列》 教学目标 理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题。
2、教学重点:等比数列的概念的形成与深化;等比数列通项公式的推导及应用。 教学难点:等比数列概念深化:体现它是一种特殊函数,等比数列的判定、证明及初步应用。
3、确定首项和公比:等比数列的首项为a1,公比为q。求第n项的值:等比数列的第n项an可以通过公式an=a1*q^(n-1)来计算。其中,^表示乘方运算。
4、(1)等比数列的通项公式是:An=A1*q^(n-1)若通项公式变形为an=a1/q*q^n(n∈N*),当q0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。
高三数学必修五上册知识点
注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
(1)在直角三角形中满足勾股定理—在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。数学表达式:a2+b2=c2 (2)a2+b2=c2求c,因为c是一条边,所以就是求大于0的一个根。
高三数学必修五知识点梳理 等比数列的基本性质 ⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q(m为等距离的项数之差)。
高中数学必修五内容,解题方法
高一是我们进入高中时期的第一阶段,我们应该完善己身,好好学习。
数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。
用累加法求通项公式an的求法:左边an-an-1+an-1-an-2+an-2-···-a2+a2-a1,而且中间的都抵消,最后得an-a1,右边是n-1个1相加。
数列是高中数学的重要内容,它与数、式、函数、方程、不等式有着密切的联系,是每年高考的必考内容。同时数列综合问题中蕴含着许多数学思想与方法(如函数思想、方程思想、分类讨论、化归与转化思想、归纳猜想等)。
对于两个实力相当的同学,在考试中某些解题策略技巧使用的好坏,往往会导致两人最后的成绩有很大的差距。